
SU
M

M
ER

 2018
T H E M A G A Z I N E F O R T H E I T P R O F E S S I O N A L

ETHICS
TECHNOLOGY / RIGHTS / RESPONSIBILITIES

bcs.org/itnow

50 ITNOW June 2018

We make many errors because we don’t
notice them until it’s too late. A momentary
daydream or distraction can result in a tea
bag being placed into a kettle instead of a
cup, with the guilty party not noticing until
after the fact. Fortunately, a tea bag in a
kettle is not a hard error to recover from.

 When we are programming, we make
mistakes, and the consequences may not
be visible for a long time. The users of
the programs may not understand that
their problems are triggered by faulty
code. Nurses have to respond rapidly
when under huge workload pressures;
programmers can take years developing
systems for hospitals, and they should
use that time to anticipate and properly
manage the task.

When a button is pressed on an
electronic device, conductors move to

make an electrical connection, which is
recorded as a key press. The conductors
usually bounce, perhaps 100 times in a
millisecond before they settle down. Key
bounce is a standard problem, and it must
be solved for buttons to be reliable. A
simple solution is to use electronics, but it

the nurse entered (in this case) 366 mL/
hr, making it look like they negligently
entered the over-dose. In fact, the device
malfunctioned.

If a nurse is charged with manslaughter
after a fatal error, the key bounce bug can
mislead the prosecutors, and the nurse
may be persuaded into a plea bargain. Key
bounce errors are hard to reproduce, and
if the prosecution wants to check a device
thoroughly they will probably send it to
the original manufacturers — who have a
confl ict of interest!

The price of errors
When we make errors we can be reluctant
to admit them. It then seems highly
unusual when an error does come to light.
When Kimberly Hiatt, a critical care nurse,
made a calculation error, she reported it,
was escorted from her hospital, put on
leave, investigated and fi ned. She was
devastated and committed suicide.

When my father was killed by an error,
the doctor’s computer report said there
would be full recovery. Yet dad was already
dead. Had the doctor reported it honestly,
he might have been treated like
Kimberly Hiatt.

When Lisa Sparrow gave a patient
100mL with a drug infusion pump instead
of 10mL, she was reported by the Daily Mail
as a ‘blundering nurse’. In her trial, it was
claimed no error was found with the device

is cheaper to connect the button directly
to the computer and fi x the key bounce
in software. However, if the programmer
programs it incorrectly, the program will
have a bug. The programmer probably
won’t be aware they made an error, and
the device will go into production.

Cardinal Health is a company that
makes medical devices, where the code
should have very few errors. Cardinal
Health was issued warning letters by the
FDA, the US medical device regulator,
outlining key bounce problems with their
pump. Then the FDA had to issue a Class 1
Recall (meaning there is a recognised risk
of death), a� ecting 150,000 devices, and
involving US Marshals seizing equipment
worth $1.8 million.

One particular problem of note was
when a patient received an over-infusion

of oxytocin. The pump was intended to be
set for 36 mL/hr but was set to a rate of
366 mL/hr, ten times higher. The single
digit 6 bounced, and was recorded as two
presses, making 66.

If, after a key bounce like this, there’s
an investigation, the pump’s log will show

Harold Thimbleby, See Change Digital Health Fellow at Swansea University, takes a look
at computer error in the health sector, and considers the challenges faced in ensuring a
change for the better.

Im
ag

e:
 G

et
ty

/N
an

oS
to

ck
k

WHEN PROGRAMMING
ERRORS COST LIVES

If a nurse is charged with manslaughter after a
fatal error, the key bounce bug can mislead the
prosecutors, and the nurse may be persuaded into a
plea bargain.

INSIDE MEDICAL SOFTWARE:

do
i:1

0.
10

93
/i

tn
ow

/b
w

y0
54

 ©
20

18
 T

he
 B

ri
tis

h
Co

m
pu

te
r

S
oc

ie
ty

June 2018 ITNOW 51

HEALTH

she used, yet the hospital replaced all the
pumps with ‘safer ones’. The implication is
that the original pumps were part of the
problem.

Dr Hadiza Bawa-Garba was convicted of
manslaughter when a child in her care died
of sepsis. Her trial has been controversial
because it sends out powerful messages
around how error is blamed on good
clinicians: She had an impeccable record.
Yet almost unremarked is that there was
an IT failure lasting four hours, which
delayed her getting blood test results
and probably caused other distracting
chaos. Surely the programmer (or the
cyberattacker?) is partly responsible for the
manslaughter?

We can be confi dent Dr Bawa-Garba was
trying to keep her patients alive despite

hindrance from her IT, but if you read the
‘warranty’ and disclaimers on any software,
you wonder whether programmers have
anyone’s interests at heart other than
their own. Many EULAs (end user licence
agreements) require the user to indemnify
the manufacturer! That does not encourage
them to write safe programs.

These are just a few examples, but what
is the scale of the problem? Best estimates
put preventable error as a top killer,
comparable to cancer and cardiovascular
disease. The rate of serious harm, rather

than death, is estimated to be 20
times higher.

Every patient is managed and treated
by computer, from booking appointments,
handling tests, delivering drugs and more.
Computers do have bugs, so computer-
related harm — causing error, not stopping
user error, not helping detect errors —
must be signifi cant.

If computers only contribute to 10 per
cent, just that would exceed the annual
deaths from car accidents. We worry
about making roads and cars safer. We
demand safety technologies: safety belts,
air bags, ABS. So why don’t we worry about
making hospital computing safer? Contrast
Cardinal Health’s attitude to bugs with
General Motors, who, in 2016, voluntarily
recalled four million cars over a bug

suspected of killing one person.
The power of scapegoating has a lot

to do with it. When an error happens,
if the nurse or doctor is blamed, the
problem seems solved. The hospital no
longer has the ‘bad nurse’, and they have
saved themselves costs of computer
investigations, and they have saved
themselves worrying that their expensive
computers may be unreliable.

Often the nurse will agree to be
scapegoated, because the computer
evidence incriminates them. Who can

argue with gigabytes? The spurious logic
of scapegoating reinforces itself: if the
nurse is to blame, then they have betrayed
our trust, and if we are betrayed, we
are justifi ed blaming them. The blame
culture reinforces itself by psychological
mechanisms of displacement and denial.

Furthermore, the law is against the
clinician: if the device has been CE marked,
the presumption of error is caused by the
user. And it is easy to get CE marks. There
is no robust process.

Programming is di� cult, and safety-
critical programming is especially di� cult.
Yet medical programmers need no
qualifi cations. To become an anaesthetist,
if you pass the exams, it takes eight years.
If you want to program a pump to deliver
anaesthetics, you can start now with
no exams. Anaesthetists have standard
operating procedures. Programmers don’t.

Blinded by science
People are excited by computers. The NHS
wants to go paperless, and everybody
wants to use blockchain to improve things.
But there is no evidence it is e� ective.

Going from the lab to an approved drug
can take 15 years. We understand how to
develop drugs, do randomised controlled
trials, and so on.

We have little idea how to develop
programs and assess them for safety and
e� ectiveness. If a drug takes 15 years to
get to market, why are we rushing into
new computer ‘solutions’ that have not
been rigorously developed or tested? If
somebody develops a new blockchain

Often the nurse will agree to be scapegoated,
because the computer evidence incriminates them.
Who can argue with gigabytes?

52 ITNOW June 2018

technology for healthcare, shouldn’t we
develop it at least as carefully as a drug,
and, if trials are successful, maybe start
using it in 2033?

There is this assumption that the latest
computers are an improvement, but speed
and fancy technologies like blockchain
(and cloud and big data and …) is an
addictive drug. If computers are perceived
as perfect and something goes wrong (as
it eventually will) then it logically follows
that something else must have caused
the problem. It must have been the user.
If we scapegoat the user, the problem
seems to be solved. Scapegoating is a
deceptively simple explanation that saves
us the daunting work of evaluating our IT.
Disciplinary processes then satisfyingly
make sure mistakes don’t happen here!

Ways forward
I have only explained a few simple
healthcare bugs. Many are much harder to
spot; many, I think, are never spotted.

Modern healthcare is amasing and
we entrust our lives to it, which makes it
seem all the more shocking when anybody

admits to problems or gets caught.
Scapegoating dedicated NHS sta� is not

going to help improve the system, though
it gives a misleading impression of trying.
We must be clear what has really gone
wrong if we want to improve.

1. BCS, or equivalent technically
authoritative organisations, should
have a task group to evaluate any
incident, so the right lessons
are learned.

2. BCS should help the NHS procure

safer systems and equipment.
These ideas will put pressure on
industry to improve, and — if they
want to — there are many ways to
improve, such as adopting software
safety processes from aviation.

3. We should improve regulation to
require appropriate evidence that
healthcare software is dependable
and that it actually delivers cost-
e� ective benefi ts to patients.

4. We should licence and
require safety critical systems
programmers to be at least as
competent as professionals
working in the fi eld.

5. When something goes wrong, every
defence failed including computer
systems — but blaming the
programmer is as problematic as
scapegoating the user.

These are some suggestions to start the
conversation. We must start something
before we have a thalidomide-scale
computer-related incident that forces our
hand, because when computers go wrong

they can do it on a huge scale. A clinician
can only kill one person at a time, but a
programmer can kill thousands...

Acknowledgements
This article is based on a lecture
sponsored by BCS’s ICT Ethics Specialist
Group, which took place on 6 March 2018.

If we scapegoat the user, the problem seems to
be solved. Scapegoating is a deceptively simple
explanation that saves us the daunting work of
evaluating our IT.

Further reading
1. H. Thimbleby, A. Lewis & J.

Williams, ‘Making Healthcare
Safer by Understanding,
Designing and Buying Better
IT’, Clinical Medicine, 15(3):258–
262, 2015. DOI 10.7861/
clinmedicine.15-3-258 — a
review of many healthcare IT
problems and suggestions for
better procurement processes.

2. H. Thimbleby & P. Cairns,
‘Interactive numerals’,
Royal Society Open Science,
4(160903), 2017. DOI 10.1098/
rsos.160903 — fl aws and
defects in number entry user
interfaces are ubiquitous
and easily avoided (once
recognised).

3. H. Thimbleby, Cybersecurity
Problems in a Typical Hospital
(and probably all of them),
Proceedings of the 25th Safety-
Critical Systems Symposium,
415–439, 2017 — a review of
a large criminal case based on
fl awed patient data.

4. H. Thimbleby, Trust Me,
I’m A Computer, Future
Healthcare Journal, 4(2):105–
108, 2017. DOI 10.7861/
futurehosp.4-2-105 — the
psychology of IT misdirection.

5. M. Thomas & H. Thimbleby,
Computer Bugs in Hospitals:
A New Killer, Gresham
College Lecture, 2018. www.
gresham.ac.uk — transcript
of a public lecture, providing
an authoritative review of the
problem. Includes extensive
bibliography.

	FRONT-COVER
	CONTENTS
	bwy033
	bwy034
	bwy035
	bwy036
	bwy037
	bwy038
	bwy039
	bwy040
	bwy041-amended
	bwy042
	bwy043
	bwy044
	bwy045
	bwy046
	bwy047
	bwy048
	bwy049
	bwy050
	bwy051
	bwy052
	bwy053
	bwy054
	bwy055
	bwy056
	bwy057
	bwy058
	bwy059
	bwy060
	bwy061

